Skip to main content

Flux-Core Arc Welding (FCAW)

FLUX-CORE ARC WELDING (FCAW)

The Process:-

Flux-core arc welding (FCAW) is similar to GMAW, as shown in Figure a. However, as shown in Figure b, the wire electrode is flux cored rather than solid; that is, the electrode is a metal tube with flux wrapped inside. The functions of the flux are similar to those of the electrode covering in SMAW, including protecting the molten metal from air. The use of additional shielding gas is optional.


Flux-Core Arc Welding (FCAW)
Flux-Core Arc Welding (FCAW) (a) overall process (b) welding area enlarged


Advantages of FCAW:-
  • High deposition rates
  • Deeper penetration than SMAW
  • High quality welds
  • Less pre-cleaning than GMAW
  • Slag covering helps with out-of-position welds
  • Self-shielded FCAW is draft tolerant

Disadvantages of FCAW:-

  • Slag must be removed
  • Higher fume generation than GMAW and SAW
  • Spatter
  • Equipment is more expensive and complex than SMAW
  • FCAW wire is more expensive


Types of continuous wire electrodes:-




Comments

Popular posts from this blog

Oxyacetylene Welding (OAW)

OXYACETYLENE WELDING The Process:- Gas welding is a welding process that melts and joins metals by heating them with a flame caused by the reaction between a fuel gas and oxygen. Oxyacetylene welding (OAW), shown in Figure is the most commonly used gas welding process because of its high flame temperature. A flux may be used to deoxidize and cleanse the weld metal. The flux melts, solidifies, and forms a slag skin on the resultant weld metal. Three different types of flames in oxyacetylene welding: neutral, reducing, and oxidizing , which are described next. Advantages and Disadvantages :- The main advantage of the oxyacetylene welding process is that the equipment is simple, portable, and inexpensive.Therefore, it is convenient for maintenance and repair applications. However, due to its limited power density, the welding speed is very low and the total heat input per unit length of the weld is rather high, resulting in large heat-affected zones and severe distortion.The...

Electroslag Welding (ESW)

ELECTROSLAG WELDING The Process :- Electroslag welding (ESW) is a process that melts and joins metals by heating them with a pool of molten slag held between the metals and continuously feeding a filler wire electrode into it, as shown in Figure. The weld pool is covered with molten slag and moves upward as welding progresses. A pair of water-cooled copper shoes, one in the front of the workpiece and one behind it, keeps the weld pool and the molten slag from breaking out. Similar to SAW , the molten slag in ESW protects the weld metal from air and refines it. Strictly speaking, however, ESW is not an arc welding process, because the arc exists only during the initiation period of the process, that is, when the arc heats up the flux and melts it. The arc is then extinguished, and the resistance heating generated by the electric current passing through the slag keeps it molten. In order to make heating more uniform, the electrode is often oscillated, especially when welding thicker...